Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Hepatol ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: covidwho-20244104

RESUMEN

BACKGROUND AND AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n=6) and from patients with an initial diagnosis of AIH (n=9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune like hepatitis (DI-AILH). In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor (BCR) sequencing showed that T- and B-cell clones were more dominant in VILI than in AIH. In addition, many T-cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6 and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 vaccination-induced liver injury is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. VILI may be a separate entity, which is distinct from AIH and more closely related to DI-AILH. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury. Our analysis shows that COVID-19 vaccine-induced liver injury shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that vaccine-induced liver injury is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 vaccine-induced liver injury will recover completely and do not develop long-term autoimmune hepatitis.

2.
Am J Respir Crit Care Med ; 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2235711

RESUMEN

RATIONALE: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. OBJECTIVES: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. METHODS: We collected 147 blood, 9 lung tissue, and 36 bronchoalveolar lavage fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on bronchoalveolar lavage fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. MEASUREMENTS AND MAIN RESULTS: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19, but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. CONCLUSIONS: Our data suggest that patients with severe COVID-19 harbor IgA against pulmonary surfactant proteins B and C and that these antibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
Ann Allergy Asthma Immunol ; 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2234094

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can progress into a severe form of acute lung injury. The cosignaling receptor cluster of differentiation 48 (CD48) exists in membrane-bound (mCD48) and soluble (sCD48) forms and has been reported to be implicated in antiviral immunity and dysregulated in several inflammatory conditions. Therefore, CD48 dysregulation may be a putative feature in COVID-19-associated inflammation that deserves consideration. OBJECTIVE: To analyze CD48 expression in lung autopsies and peripheral blood leukocytes and sera of patients with COVID-19. The expression of the CD48 ligand 2B4 on the membrane of peripheral blood leukocytes was also assessed. METHODS: Twenty-eight lung tissue samples obtained from COVID-19 autopsies were assessed for CD48 expression using gene expression profiling immunohistochemistry (HTG autoimmune panel). Peripheral whole blood was collected from 111 patients with COVID-19, and the expression of mCD48 and of membrane-bound 2B4 was analyzed by flow cytometry. Serum levels of sCD48 were assessed by enzyme-linked immunosorbent assay. RESULTS: Lung tissue of patients with COVID-19 showed increased CD48 messenger RNA expression and infiltration of CD48+ lymphocytes. In the peripheral blood, mCD48 was considerably increased on all evaluated cell types. In addition, sCD48 levels were significantly higher in patients with COVID-19, independently of disease severity. CONCLUSION: Considering the changes of mCD48 and sCD48, a role for CD48 in COVID-19 can be assumed and needs to be further investigated.

4.
Front Immunol ; 12: 763098, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581339

RESUMEN

Although initial immunophenotypical studies on peripheral blood and bronchoalveolar lavage samples have provided a glimpse into the immunopathology of COVID-19, analyses of pulmonary draining lymph nodes are currently scarce. 22 lethal COVID-19 cases and 28 controls were enrolled in this study. Pulmonary draining lymph nodes (mediastinal, tracheal, peribronchial) were collected at autopsy. Control lymph nodes were selected from a range of histomorphological sequelae [unremarkable histology, infectious mononucleosis, follicular hyperplasia, non-SARS related HLH, extrafollicular plasmablast activation, non-SARS related diffuse alveolar damage (DAD), pneumonia]. Samples were mounted on a tissue microarray and underwent immunohistochemical staining for a selection of immunological markers and in-situ hybridization for Epstein Barr Virus (EBV) and SARS-CoV-2. Gene expression profiling was performed using the HTG EdgeSeq Immune Response Panel. Characteristic patterns of a dysregulated immune response were detected in COVID-19: 1. An accumulation of extrafollicular plasmablasts with a relative paucity or depletion of germinal centers. 2. Evidence of T-cell dysregulation demonstrated by immunohistochemical paucity of FOXP3+, Tbet+ and LEF1+ positive T-cells and a downregulation of key genes responsible for T-cell crosstalk, maturation and migration as well as a reactivation of herpes viruses in 6 COVID-19 lymph nodes (EBV, HSV). 3. Macrophage activation by a M2-polarized, CD163+ phenotype and increased incidence of hemophagocytic activity. 4. Microvascular dysfunction, evidenced by an upregulation of hemostatic (CD36, PROCR, VWF) and proangiogenic (FLT1, TEK) genes and an increase of fibrin microthrombi and CD105+ microvessels. Taken together, these findings imply widespread dysregulation of both innate and adoptive pathways with concordant microvascular dysfunction in severe COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Pulmón , Activación de Macrófagos/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Linfocitos T/inmunología , Linfocitos T/patología , Tromboinflamación/inmunología , Tromboinflamación/patología , Tromboinflamación/virología
5.
Pathobiology ; 89(3): 166-177, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1574506

RESUMEN

INTRODUCTION: Since angiotensin converting enzyme-2 (ACE2) was discovered as an essential entry factor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), there has been conflicting evidence regarding the role of renin-angiotensin-aldosterone system (RAAS) in COVID-19. This study elucidates pulmonary expression patterns SARS-CoV-2 entry factors (ACE2 and transmembrane protease serine subtype 2, TMPRSS2) and RAAS components in lethal COVID-19. METHODS: Lung tissue from COVID-19 autopsies (n = 27) and controls (n = 23) underwent immunohistochemical staining for RAAS components (angiotensin receptors 1 and 2, ACE2 and Mas-receptor) and bradykinin receptors 1 and 2. Staining of individual cellular populations (alveolar pneumocytes [ALV], desquamated cells [DES] and endothelium [END]) was measured by a binary scale (positive/negative). SARS-CoV-2 was detected using immunohistochemistry against nucleocapsid protein, in-situ hybridization and quantitative reverse transcriptase polymerase chain reaction. Gene expression profiling for ACE2, ACE and TMPRSS2 was performed. RESULTS: Subtle differences were observed when comparing COVID-19 patients and controls not reaching statistical significance, such as a higher incidence of ACE2-positivity in END (52% vs. 39%) but lower positivity in ALVs (63% vs. 70%) and an overall downregulation of ACE2 gene expression (0.25 vs. 0.55). However, COVID-19 patients with RAAS inhibitor (RAASi) intake had significantly shorter hospitalization times (5 vs. 12 days), higher viral loads (57,517 vs. 15,980/106 RNase P-gene copies) and decreased ACE/ACE2-expression ratios (4.58 vs. 11.07) than patients without. TMPRSS2 expression was significantly (1.76-fold) higher in COVID-19 patients than controls. CONCLUSION: Our study delineates the heterogeneous expression patterns of RAAS components in the lungs, which vary amongst cellular populations, and implies that COVID-19 patients with RAASi-intake present with a more rapid disease progression, although this requires further investigation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Inhibidores de la Enzima Convertidora de Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA